Abstract
Given a polynomial f of odd degree, the nontrivial S-units can be effectively related to the continued fraction expansions of the elements associated with \(\sqrt f \) only in the case where S contains an infinite valuation and a finite valuation determined by first-degree polynomial. A quasi-periodicity criterion for any element of the field of formal power series in a first-degree polynomial is obtained. For key elements, a more accurate criterion is found. The criterion is used to show that, for S specified above, in the presence of a nontrivial S-unit, the expansion of \(\sqrt f \) can be both nonperiodic and periodic. Estimates relating the quasi-period to the degree of the fundamental S-unit are obtained. Examples in which the bounds of these estimates are attained are given.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have