Abstract

Introduction: Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. Methods: We used Cre-LoxP methodology to generate mice with a tamoxifen-inducible, conditional knock out of Ep300 and/or Crebbp in skeletal muscle. At 13-15 weeks of age, the knockout was induced via oral gavage of tamoxifen and oral glucose tolerance, ex vivo skeletal muscle insulin sensitivity, and microarray and proteomics analysis were done. Results: Loss of both p300 and CBP in adult mouse skeletal muscle rapidly and severely impairs whole body glucose tolerance and skeletal muscle insulin sensitivity. Furthermore, giving back a single allele of either p300 or CBP rescues both phenotypes. Moreover, the severe insulin resistance in the p300/CBP double knockout mice is accompanied by significant changes in both mRNA and protein expression of transcript/protein networks critical for insulin signaling, GLUT4 trafficking, and metabolism. Lastly, in human skeletal muscle samples, p300 and CBP protein levels correlate significantly and negatively with markers of insulin resistance. Conclusions: p300 and CBP are jointly required for maintaining whole body glucose tolerance and insulin sensitivity in skeletal muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call