Abstract

27-Hydroxycholesterol (27HC) is the most abundant oxysterol in circulation and metabolized by a P450 enzyme CYP7B1. Its levels closely correspond to those of cholesterol in the body. In addition, previously it was found that 27HC is an endogenous selective estrogen receptor modulator (SERM), which links cholesterol metabolism to estrogen receptor actions (1). Brown adipose tissue (BAT) is the primary source of energy expenditure and energy homeostasis, as well as body temperature maintenance. While previously it was believed that BAT activity is limited to neonates and young children, it is now recognized that BAT is also active in adult humans and its function is impaired by metabolic diseases such as obesity. BAT is also a secretory organ and produces brown adipokines, although the exact function of BAT and adipokines from this tissue in obesity has not been completely understood. Recently, it was reported that 27HC plays an important role in obesity and augments body weight gain in response to a high fat, high cholesterol (HFHC) diet by increasing pre-adipocyte population in the white adipose tissue. 27HC mimics the effects by HFHC diet-feeding on white adipose tissue, such as promoting the inflammation and macrophage infiltration (2). In this study, we explored the effect of 27HC on BAT morphology and function. First, we compared the morphology of BAT from wild-type mice and Cyp7b1-/- mice that have elevated levels of 27HC using H&E staining. Interestingly, brown adipocytes from Cyp7b1-/- mice were larger in cell size than those from wild-type mice, and the cells were mostly unilocular compared to the multilocular cells from wild-type mice, indicating the transition toward a “whitening” phenotype. Next, We treated mice fed a normal chow or a HFHC diet with 27HC or vehicle control for 8 weeks to examine the direct effect by 27HC on BAT. Similar to the phenotype in Cyp7b1-/-mice, 27HC increased the “whitening” of BAT regardless of the diet. We also determined the gene expression of brown adipocyte markers such as UCP1, PGC1a, and DIO2, and found that 27HC significantly decreased the expression of the BAT markers regardless of the diet, confirming the “whitening” observed in the morphology. Moreover, the energy expenditure in mice treated with 27HC was decreased compared to the vehicle control on a HFHC diet, suggesting that 27HC also alters BAT function. These results show that 27HC causes the whitening of BAT, and shed light on the important role of 27HC in brown adipose tissue function. Future experiments will be warranted toward further understanding of the role of 27HC in BAT function. Reference:(1) Umetani, Michihisa, et al. Nature medicine 13.10 (2007): 1185. (2) Asghari, Arvand, et al. Endocrinology 160.10 (2019): 2485-2494.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call