Abstract
ABSTRACT We present some results about Lie algebras, which can be written as the sum of two subalgebras in two cases: where both subalgebras are simple or both are nilpotent. In the first case we suggest new examples of simple Lie algebras admitting decomposition into the sum of simple subalgebras and give explicit realizations where the existence of such decompositions was established earlier. We single out cases where such decomposition is not possible. We also construct examples of solvable Lie algebras, which are the sums of two nilpotent subalgebras, and the derived length of the sum is greater than the sum of the nilpotent indexes of the summands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.