Abstract

The diacid chemistry of summertime PM2.5 and the size-segregated aerosols (9-stages) in Chongming Island, a coastal site in the Yangtze River Delta (YRD), China, were investigated. Our results showed that oxalic acid (C2) was the dominant dicarboxylic acid, followed by succinic acid (C4), malonic acid (C3), adipic acid (C6) and phthalic acid (Ph). Two types of haze pollution events were identified during the sampling period, i.e., Event I, which was mainly caused by the local biomass burning emission, and Event II, which was caused by a long-distance transport of the YRD urban pollution. C2 linearly correlated with SO42− and NO3− in Event I but only with O3 in Event II, indicating that oxalic acid formation was dominated by the aerosol aqueous phase oxidation in Event I and by the gaseous phase oxidation in Event II, respectively.65.5% of Cl− in sea salts at the site in the clean period was depleted and robustly correlated with oxalic acid (R2 = 0.74). We proposed a mechanism to explain such a significant Cl− depletion, in which anthropogenic VOC oxidize into oxalic acid and its precursors such as glyoxal and methyglyoxal by a photochemical oxidation, and then oxalic acid and the related compounds subsequently react with sea salts and release HCl into the troposphere. The significant Cl− depletion of sea salts related with the organic acid (C2) in coastal China was found for the first time and should be considered in future studies, because oxalic acid and related SOA in the country are abundant and the released HCl may effectively enhance the oxidation capacity of the atmosphere by photolytically producing Cl radicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.