Abstract

An intelligent reflecting surface (IRS) consists of a large number of low-cost reflecting elements, which can steer the incident signal collaboratively by passive beamforming. This way, IRS reconfigures the wireless environment to boost the system performance. In this paper, we consider an IRS-assisted uplink non-orthogonal multiple access (NOMA) system. The objective is to maximize the sum rate of all users under individual power constraint. The considered problem requires a joint power control at the users and beamforming design at the IRS, and is nonconvex. To handle it, semidefinite relaxation is employed, which provides a near-optimal solution. Presented numerical results show that the proposed NOMA-based scheme achieves a larger sum rate than orthogonal multiple access (OMA)-based one. Moreover, the impact of the number of reflecting elements on the sum rate is revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.