Abstract

This paper is concerned with the analysis of a class of optimal control problems governed by a time-harmonic eddy current system with a dipole source, which is taken as the control variable. A mathematical model is set up for the state equation where the dipole source takes the form of a Dirac mass located in the interior of the conducting domain. A non-standard approach featuring the fundamental solution of a curlcurl−Id operator is proposed to address the well-posedness of the state problem, leading to a split structure of the state field as the sum of a singular part and a regular part. The aim of the control is the best approximation of desired electric and magnetic fields via a suitable L2-quadratic tracking cost functional. Here, special attention is devoted to establishing an adjoint calculus which is consistent with the form of the state variable and in this way first order optimality conditions are eventually derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.