Abstract

We report a sulphate radical enhanced photoelectrochemical degradation of sulfamethoxazole on a solar light driven fluorine doped tin oxide - copper(I) oxide photoanode. Copper(I) oxide was prepared by a template-free method and dispersed onto the surface of a fluorine doped tin oxide glass to form the photoanode. UV-Vis diffuse reflectance spectroscopy showed that the photoanode absorbed in the visible light region. With sodium persulphate as the source of sulphate radical, photoelectrochemical degradation studies showed that sodium persulphate markedly enhanced the degradation of sulfamethoxazole. Studies on the effects of change in concentration of the persulphate and the absence of the persulphate on the photoelectrocatalytic degradation process were conducted. Overall, the extent of degradation and mineralisation of sulfamethoxazole in water was found to be 86% and 67% respectively with bias potential of 1.5 V for the sulphate radical enhanced process. Scavenger studies showed that the photogenerated holes and sulphate radicals were the primary active species in the abatement of sulfamethoxazole.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.