Abstract

A major challenge hindering the practical adoption of room-temperature sodium-sulfur batteries (NaSBs) is polysulfide dissolution and shuttling, which results in irreversible capacity decay and low Coulombic efficiencies. In this work, we demonstrate for the first time NaSBs using a ferrocene-derived amorphous sulfurized cyclopentadienyl composite (SCC) cathode. Polysulfide dissolution is eliminated via covalent bonding between the insoluble short-chain sulfur species and carbon backbone. Control experiments with a metal-free composite analogue determined that the iron species in the SCC does not have a significant role in polysulfide anchoring. Instead, the superior electrochemical performance is attributed to sulfur covalently bonded to carbon and the uniform nanoparticulate morphology of the SCC composite. In the carbonate-based electrolyte, a discharge capacity of 795 mAh g(S)-1 was achieved during early cycling at 0.2 C, and high Coulombic efficiencies close to 100% were maintained with capacity retention of 532 and 442 mAh g(S)-1 after 100 and 200 cycles, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.