Abstract

AbstractThe novel approach based on 33S isotope tracing is proposed for the elucidation of hydrodesulfurization (HDS) mechanisms and characterization of molybdenum sulfide catalysts. The technique involves sulfidation of the catalyst with 33S‐isotope‐labeled dihydrogen sulfide, followed by monitoring the fate of the 33S isotope in the course of the hydrodesulfurization reaction by online mass spectrometry and characterization of the catalyst after the reaction by temperature‐programmed oxidation with mass spectrometry (TPO‐MS). The results point to different pathways of thiophene transformation over Co or Ni‐promoted and unpromoted molybdenum sulfide catalysts, provide information on the role of promoter and give a key for the design of new efficient HDS catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.