Abstract

Sulfur hexafluoride (SF6) is a powerful greenhouse gas with a high global warming potential. While SF6 emissions from urban areas have been extensively studied, our knowledge about SF6 concentrations in the oceanic atmosphere and its air-sea exchange remains limited. Herein, the concentrations of SF6 in the atmosphere and surface seawater of the WPO (Western Pacific Ocean) and EIO (Eastern Indian Ocean) were comprehensively characterized from 2019 to 2022 in the first long-term study. The mean mixing ratios of SF6 over the WPO and EIO during 2019–2020 (2021–2022) were 10.9 (11.2) and 10.9 (11.1) ppt, respectively. The atmospheric SF6 concentration over the WPO and EIO increased at rates of 0.40 ± 0.06 and 0.58 ± 0.28 ppt yr−1, respectively, surpassing previously reported annual growth rates. The faster growth was primarily attributed to the influence of polluted air masses originating from eastern Asian countries, particularly Japan, Northeast China, and India. This might explain why the radiative forcing caused by SF6 in the study region was higher than the global average. The concentrations of SF6 in the surface seawater of the WPO and EIO ranged from 0.33 to 2.54 fmol kg−1, and the distribution was affected by atmospheric concentrations and ocean currents. Estimated air-sea fluxes revealed that the ocean acted as a significant sink of atmospheric SF6, and the preliminary estimation suggested oceanic uptake accounts for about 7% of annual global SF6 emissions. Based on these findings, we tentatively suggest that the strength of the ocean as a sink of SF6 may warrant reassessment. The global oceanic uptake of SF6 has the potential to reduce its global abundance and environmental impacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.