Abstract

We present here results of our first-principles studies of the sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride (g-C3N4). Using the ab initio thermodynamics approach combined with some kinetic analysis, we reveal the favorable S-doping configurations. By analyzing the valence charge densities of the doped and undoped systems, we find that sulfur partially donates its px- and py- electrons to the system with some back donation to the S pz-states. To obtain an accurate description of the excited electronic states, we calculate the electronic structure of the systems using the GW method. The band gap width calculated for g-C3N4 is found to be equal to 2.7 eV, which is in agreement with experiment. We find the S doping causes a significant narrowing of the gap. Furthermore, the electronic states just above the gap become occupied upon doping, making the material a conductor. Analysis of the projected local density of states provides an insight into the mechanism underlying such changes in the electronic structure of g-C3N4 upon S doping. Based on our results, we propose a possible explanation for the S-doping effect on the photocatalytic properties of g-C3N4 observed in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.