Abstract

Graphitic carbon nitride (g-C3N4) has, since 2009, attracted great attention for its activity as a visible-light-active photocatalyst for hydrogen evolution. Since it was synthesized in 1834, g-C3N4 has been extensively studied both catalytically and structurally. Although its 2D structure seems to have been solved, its 3D crystal structure has not yet been confirmed. This study attempts to solve the 3D structure of graphitic carbon nitride by means of X-ray diffraction and of neutron scattering. Initially, various structural models are considered and their XRD patterns compared to the measured one. After selecting possible candidates as g-C3N4 structure, neutron scattering is employed to identify the best model that describes the 3D structure of graphitic carbon nitride. Parallel chains of tri-s-triazine units organized in layers with an A–B stacking motif are found to describe the structure of the synthesized graphitic carbon nitride well. A misalignment of the layers is favorable because of the decreas...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.