Abstract

Ash produced during oxy-fuel combustion is expected to differ from ash produced during air combustion because of the higher CO2 and SO2 atmospheres in which it is generated. For a quantitative understanding of the sulfation behavior of fly ash in oxy-fuel combustion, fly ash from three commercial Australian sub-bituminous coals was tested and decomposed under an inert atmosphere. Thermal evolved gas analysis was completed for ash produced in both air and oxy-fuel environments. Pure salts were also tested under the same conditions to allow for identification of the species in the ash that capture sulfur, along with thermodynamic modeling using FactSage 6.3. Sulfur evolved during the decomposition of air and oxy-fuel fly ash was compared to the total sulfur in the ash to close the sulfur balance. Both total sulfur captured by the ash and sulfur evolved during decomposition were higher for oxy-fuel fly ash than their air counterparts. Correlations of capture with ash chemistry are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call