Abstract

This article details the application of pristine nitrogen and sulfur doped carbon quantum dots (CQDs) as a novel fluorescence biosensor for the detection of glutathione. The second object of this study is to evaluate reduction of cellular nitric oxide in microglial cells. Microwave assisted hydrothermal method was used for the fabrication of CQDs. Unlike conventional methods which utilize metallic or transition metal coating over CQDs for the fabrication of fluorescence switch on/off probes, our simple yet efficient CQDs itself performed as a biosensor that is both selective and sensitive towards glutathione (GSH). Particle size analyzer, scanning electron microscope, atomic force microscopy, high-performance X-ray photoelectron spectroscopy, fourier-transform infrared spectroscopy were used for physicochemical characterization of developed CQDs. Photoluminescence properties of CQDs were analyzed using photoluminescence spectroscope for glutathione detection. Furthermore, microglial cells were used to evaluate reduction of cellular nitric oxide. The developed biosensor was able to detect GSH within a short time of 2 min. Hemolysis assay confirmed negligible red blood cell lysis even at a higher concentration of 0.2 mg/mL. Furthermore, the developed CQDs demonstrated enhanced cellular uptake, which resulted in generating fluorescence from the BV-2 microglial cells. Interestingly, the developed CQDs were able to mitigate the secretion of toxic pro-inflammatory cytokine, nitric oxide (NO) from the lipopolysaccharide (LPS) insulted BV-2 microglial cells. A 50% reduction in the secretion of NO was observed after treating with CQDs in the LPS treated BV-2 cells. These novel fluorescent CQDs with low manufacturing costs, high selectivity and sensitivity towards GSH and shorter detection time manifest them as a promising nanomaterial for diverse biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.