Abstract
The herbicide sulfometuron methyl (SM) inhibited the growth of the cyanobacterium Synechococcus sp. PCC7942, but not of Synechocystis sp. PCC6714. The inhibitory effect was alleviated by the simultaneous addition of valine, leucine and isoleucine. SM resistant mutants were isolated from Synechococcus 7942, two types of which were further analysed. In these mutants, SM3/20 and SM2/32, the activity of acetolactate synthase (ALS) — a key enzyme in the biosynthesis of branched-chain amino acids —appeared 2600- and 300-fold, respectively, more resistant to SM than that of their wild type. Strain SM2/32 also exhibited a low level of ALS activity. Although the growth of the latter mutant was extremely inhibited by valine, the sensitivity of its ALS activity to feed-back inhibition by the amino acid was unaltered. At high concentrations valine inhibited growth of the wild type strains and of the mutant SM3/20. Isoleucine alleviated the valine-induced growth inhibition. Unlike that of Synechococcus 7942, the ALS activity of Synechocystis was found to tolerate high concentrations (100-fold) of the herbicide. The study confirms that the SM mutations are correlated with a cyanobacterial ilv gene.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have