Abstract

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call