Abstract

Sulfate-reducing bacteria (SRB) appear to be the main mediators of mercury methylation in sediments, which are deemed to be major sites of methylmercury (MMHg) production. However, recent studies have also found significant MMHg formation in the water column of lakes across North America. To investigate the potential involvement of SRB in mercury methylation in the water column of a stratified oligotrophic lake, two of the main families of SRB (Desulfobacteraceae and Desulfovibrionaceae) were quantified by Real-Time Polymerase Chain Reaction of the 16S rRNA gene. MMHg production was measured applying a stable isotope technique using 198HgCl. Methylation assays were conducted at different water depths and under stimulation with lactate, acetate or propionate and inhibition with molybdate. Desulfobacteraceae and Desulfovibrionaceae16S rRNA gene copies in control samples accounted for 0.05% to 33% and <0.01% to 1.12% of the total bacterial 16S rRNA, respectively. MMHg formation was as high as 0.3 ng L−1 day−1 and largest in lactate amended samples. Strain isolation was only achieved in lactate amended media with all isolated strains being SRB belonging to the Desulfovibrio genus according to their 16S rRNA gene sequence. Isolated strains methylated between 0.06 and 0.2% of 198HgCl per day. Acetate and propionate did not stimulate mercury methylation as much as lactate. Two strains were identified as Desulfovibrio sp. 12ML1 (FJ865472) and Desulfovibrio sp. 12ML3 (FJ865473), based on partial sequences of their 16S rRNA and DSR gene. Methylation assays and bacteria characterization suggest that Desulfovibrionaceae is an important mercury methylators in Lake 658. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.