Abstract

Bacteria in the genus Elizabethkingia have emerged as a cause of life-threatening infections in humans. However, accurate species identification of these pathogens relies on molecular techniques. We aimed to evaluate the accuracy of 16S rRNA and complete RNA polymerase β-subunit (rpoB) gene sequences in identifying Elizabethkingia species. A total of 173 Elizabethkingia strains with whole-genome sequences in GenBank were included. The 16S rRNA gene and rpoB gene sequences from the same Elizabethkingia strains were examined. Of the 41 E. meningoseptica strains, all exhibited >99.5% 16S rRNA similarity to its type strain. Only 83% of the 99 E. anophelis strains shared >99.5% 16S rRNA gene similarity with its type strain. All strains of E. meningoseptica and E. anophelis formed a cluster distinct from the other Elizabethkingia species in the 16S rRNA and rpoB gene phylogenetic trees. The polymorphisms of 16S rRNA gene sequences are not sufficient for constructing a phylogenetic tree to discriminate species in the E. miricola cluster (E. miricola, E. bruuniana, E. occulta, and E. ursingii). The complete rpoB gene phylogenetic tree clearly delineates all strains of Elizabethkingia species. The complete rpoB gene sequencing could be a useful complementary phylogenetic marker for the accurate identification of Elizabethkingia species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.