Abstract
Fertilization is a controlled cell-cell interaction event that ultimately leads to the union of the gametes involved in reproduction. Fertilization is characterized by three major steps: (i) sperm binding to the extracellular matrix that coats the egg, inducing thereby the acrosome reaction; (ii) penetration of the acrosome-reacted sperm through the egg coat until its contact with the egg plasma membrane; and (iii) adhesion and fusion of the cell membranes of both gametes and the interchange of genetic materials. The acrosome reaction in the first step is important because it ensures that fertilization occurs only between gametes of homologous species. This specificity is primarily driven by the structure of egg jelly coat glycans recognized by a lectin-like binding protein (receptor) in the sperm membrane. Sea urchin fertilization is the best model utilizedfor understanding carbohydrate-mediated acrosome reactions. This report aims at describing the biochemical basis of regulatory mechanisms exerted by sea urchin sulfated fucans and galactans of well-defined chemical structures on the egg-sperm recognition process during fertilization of this invertebrate. Flagellasialin, a sulfated polysialic acid-containing glycoprotein found in sea urchin sperm flagella, is another sulfated glycan example also involved in fertilization of the echinoderm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.