Abstract

Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) inhibit fertilization in the sea urchin Strongylocentrotus purpuratus by reducing the fertilizing capacity of the sperm. Sperm fertility depends upon their motility, and their capacity to undergo the acrosome reaction upon encountering a specific ligand derived from the egg's jelly coat. The acrosome reaction involves exocytosis of the acrosomal granule at the apex of the sperm head and elongation of the acrosomal filament. This process exposes the sperm membrane that will attach to and fuse with the egg. Pretreatment of sperm with THC prevents the triggering of the acrosome reaction by solubilized egg jelly in a dose and time dependent manner. Motility of THC-treated sperm is not reduced compared to control sperm in sea water or vehicle dissolved in sea water. The adverse effects of THC on the acrosome reaction and sperm-fertilizing capacity are reversible. Studies with ionophores suggest that THC blocks the acrosome reaction by affecting event(s) in the stimulation-secretion coupling mechanism in the sperm preceding the opening of ion channels. Ultrastructural studies show that THC, CBD and CBN block the membrane fusion reaction between the sperm's plasma membrane and the acrosomal membrane that normally is elicited in response to stimulation by egg jelly to initiate the acrosome reaction. However, lipid deposits are found in the subacrosomal and centriolar fossae of cannabinoid treated sperm. The nuclear envelope is fragmented in close proximity to the lipid deposits within the subacrosomal fossa. These morphological observations suggest that cannabinoids may activate phospholipase(s) within the sperm. Biochemical studies show that THC activates phospholipase A 2 activity in sperm homogenates. Our studies show that cannabinoids reduce the fertilizing capacity of sea urchin sperm by preventing the induction of the acrosome reaction by egg jelly. The localized fragmentation of cellular membranes and the formation of lipid deposits within the sperm may be due to activation of phospholipase A 2 by cannabinoids. Metabolites derived from this membrane perturbation may inhibit triggering of the acrosome reaction by egg jelly and thereby inhibit fertilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.