Abstract

Diabetic foot ulcers (DFUs) that are not effectively treated could lead to partial or complete lower limb amputations. The lack of connective tissue growth factor (CTGF) and insulin-like growth factor (IGF-I) in DFUs results in limited matrix deposition and poor tissue repair. To enhance growth factor (GF) availability in DFUs, heparin (HN)-mimetic alginate sulfate/polycaprolactone (AlgSulf/PCL) double emulsion nanoparticles (NPs) with high affinity and sustained release of CTGF and IGF-I were synthesized. The NPs size, encapsulation efficiency (EE), cytotoxicity, cellular uptake and wound healing capacity in immortalized primary human adult epidermal cells (HaCaT) were assessed. The sonication time and amplitude used for NPs synthesis enabled the production of particles with a minimum of 236 ± 25 nm diameter. Treatment of HaCaT cells with up to 50 μg mL−1 of NPs showed no cytotoxic effects after 72 h. The highest bovine serum albumin EE (94.6 %, P = 0.028) and lowest burst release were attained with AlgSulf/PCL. Moreover, cells treated with AlgSulf/CTGF (250 ng mL−1) exhibited the most rapid wound closure compared to controls while maintaining fibronectin synthesis. Double-emulsion NPs based on HN-mimetic AlgSulf represent a novel approach which can significantly enhance diabetic wound healing and can be expanded for applications requiring the delivery of other HN-binding GFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.