Abstract

Abstract. Rapid sulfate formation is recognized as a key characteristic of severe winter haze in China. However, air quality models tend to underestimate sulfate formation during heavy haze periods, and heterogeneous formation pathways have been proposed as promising mechanisms to reduce gaps between observation and model simulation. In this study, we implemented a reactive SO2 uptake mechanism through the SO2+NO2 heterogeneous reactions in the Comprehensive Air Quality Model with Extensions (CAMx) to improve simulation of sulfate formation in the Yangtze River Delta (YRD) region. Parameterization of the SO2+NO2 heterogeneous reactions is based on observations in Beijing and considered both the impact of relative humidity and aerosol pH on sulfate formation. Ammonia is reported to be critical for the formation of secondary inorganic aerosols. Estimation of ammonia emissions is usually associated with large uncertainties and models tend to underestimate ammonia concentrations substantially. Sensitivity tests were conducted to evaluate the influence of the SO2+NO2 heterogeneous reactions as well as ammonia emissions on modeled sulfate concentrations during a period with several heavy haze episodes in the YRD region. Base case model results show large underestimation of sulfate concentrations by 36 % under polluted conditions in the YRD region. Adding the SO2+NO2 heterogeneous reactions or doubling ammonia emissions alone leads to slight model improvement (∼6 %) on simulated sulfate concentrations in the YRD region. However, model performance significantly improved when both the SO2+NO2 heterogeneous reactions and doubled ammonia emissions were included in the simulation: predicted sulfate concentrations during polluted periods increased from 23.1 µg m−3 in the base scenario to 29.1 µg m−3 (representing an increase of 26 %). Aerosol pH is crucial for the SO2+NO2 heterogeneous reactions, and our calculated aerosol pH is always acidic and increased by 0.7 with doubled ammonia emissions. Modeling results also show that this reactive SO2 uptake mechanism enhanced sulfate simulations by 1 to 5 µg m−3 for the majority of the eastern and central parts of China, with more than 20 µg m−3 increase in sulfate concentrations over the northeastern plain. These findings suggest that the SO2+NO2 heterogeneous reactions could be potentially important for sulfate formation in the YRD region as well as other parts of China. Further studies are needed to constrain the uncertainties associated with the parameterization of the SO2+NO2 heterogeneous reactions based on local data as well as to evaluate this mechanism in other regions. In addition, ammonia emissions were found to be a key driving variable of the spatial patterns of sulfate enhancement due to the new pathway. Substantial efforts are needed to improve the accuracy of the ammonia emission inventory.

Highlights

  • Rapid sulfate (SO42−) formation has been reported to be a key characteristic of severe winter haze in China

  • Temperature and relative humidity were well reproduced with normalized mean bias (NMB) and normalized mean error (NME) within 37 % and 41 %, respectively; index of agreement (IOA) values are above 0.8

  • Simulation of sulfate formation under heavy haze conditions in the Yangtze River Delta (YRD) region was implemented in this study

Read more

Summary

Introduction

Rapid sulfate (SO42−) formation has been reported to be a key characteristic of severe winter haze in China. Most air quality models tend to underestimate sulfate formation during severe winter haze episodes in China, because standard SO2 oxidation pathways, including gas-phase chemistry (i.e., oxidized by hydroxyl radical OH) and aqueous-phase chemistry (i.e., oxidized by ozone (O3) and hydrogen peroxide (H2O2)), are suppressed by weak photochemical activity and low ozone concentrations (Quan et al, 2014). For the same haze episode, Cheng et al (2016) used concentration ratios of sulfate to sulfur dioxide ([SO24−] / [SO2]) to diagnose sulfate production rate; this ratio increased with PM2.5 levels and was 6 times higher under the most polluted conditions compared to normal conditions. Most current air quality models (e.g., CMAQ, GEOS-Chem, WRF-Chem, CAMx), which only include the traditional gaseous- or aqueous-phase mechanisms for sulfate formation, do not show very good model performances for sulfate concentrations against observations during haze periods in China The underprediction of sulfate concentrations could be related to uncertainties in the emission inventory, bias of simulated meteorological fields, and/or some missing sulfate formation mechanisms that are not included in the current models

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.