Abstract

During summer stratification large amounts of phosphorus (P) accumulate in anoxic bottom waters of many lakes due to release of P from underlying sediments. The availability to phytoplankton of this P is inversely related to the Fe:P ratio in bottom waters. Using data from 51 lakes, we tested the hypothesis that sulfate concentration in lake water may be critical in controlling the Fe:P ratio in anoxic bottom waters. Results showed that Fe:P ratios in bottom waters of lakes were significantly (p<0.001) related to surface water sulfate concentrations. The higher Fe:P ratios in low sulfate systems is due not only to higher iron concentrations in anoxic bottom waters but also to lower P concentrations in anoxic waters. Thus, our results suggest that anthropogenically induced increases in sulfate concentrations of waters (e.g. from fossil fuel burning) may have a double effect on P cycling in lakes. Higher sulfate concentrations can both increase the magnitude of P release from sediments as well as increase the availability of P released from sediments into anoxic bottom waters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.