Abstract

West Nile Virus (WNV) poses a significant global public health threat as a mosquito-borne pathogen. While laboratory mouse models have historically played a crucial role in understanding virus biology, recent research has focused on utilizing immunocompromised models to study arboviruses like dengue and Zika viruses, particularly their interactions with Aedes aegypti mosquitoes. However, there has been a shortage of suitable mouse models for investigating WNV and St. Louis encephalitis virus interactions with their primary vectors, Culex spp. mosquitoes. Here, we establish the AG129 mouse (IFN α/β/γ R−/−) as an effective vertebrate model for examining mosquito–WNV interactions. Following intraperitoneal injection, AG129 mice exhibited transient viremia lasting several days, peaking on the second or third day post-infection, which is sufficient to infect Culex quinquefasciatus mosquitoes during a blood meal. We also observed WNV replication in the midgut and dissemination to other tissues, including the fat body, in infected mosquitoes. Notably, infectious virions were present in the saliva of a viremic AG129 mouse 16 days post-exposure, indicating successful transmission capacity. These findings highlight the utility of AG129 mice for studying vector competence and WNV–mosquito interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.