Abstract
BackgroundLiterature on mortars has mainly focused on the identification and characterization of their components in order to assign them to a specific historical period, after accurate classification. For this purpose, different analytical techniques have been proposed. Aim of the present study was to verify whether the combination of thermal analysis and chemometric methods could be used to obtain a fast but correct classification of ancient mortar samples of different ages (Roman era and Renaissance).ResultsAncient Roman frescoes from Museo Nazionale Romano (Terme di Diocleziano, Rome, Italy) and Renaissance frescoes from Sistine Chapel and Old Vatican Rooms (Vatican City) were analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). Principal Component analysis (PCA) on the main thermal data evidenced the presence of two clusters, ascribable to the two different ages. Inspection of the loadings allowed to interpret the observed differences in terms of the experimental variables.ConclusionsPCA allowed differentiating the two kinds of mortars (Roman and Renaissance frescoes), and evidenced how the ancient Roman samples are richer in binder (calcium carbonate) and contain less filler (aggregate) than the Renaissance ones. It was also demonstrated how the coupling of thermoanalytical techniques and chemometric processing proves to be particularly advantageous when a rapid and correct differentiation and classification of cultural heritage samples of various kinds or ages has to be carried out.Graphical abstractPCA analysis of TG data allows differentiating mortar samples from different ages (Roman era and Renaissance).
Highlights
Literature on mortars has mainly focused on the identification and characterization of their components in order to assign them to a specific historical period, after accurate classification
Studies on ancient mortars are relatively recent [2,3,4] and have mainly focused on the identification and characterization of their components in order to assign them to a specific historical period, after accurate classification [5]
The review was accompanied by an extensive bibliography and postulated that the first step in mortar characterization schemes is optical microscopy to identify aggregates and the various mineral additions, binder type, the binder-related particles, the pore structures and how this technique acts as a valuable aid in the damage diagnosis of degraded historic mortars
Summary
Ancient Roman frescoes from Museo Nazionale Romano (Terme di Diocleziano, Rome, Italy) and Renaissance frescoes from Sistine Chapel and Old Vatican Rooms (Vatican City) were analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). Principal Component analysis (PCA) on the main thermal data evidenced the presence of two clusters, ascribable to the two different ages. Inspection of the loadings allowed to interpret the observed differences in terms of the experimental variables
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have