Abstract
Growth substrates are essential for aquaponic systems and play an important role in vegetable growth and water quality. In this study, we explored an innovative combination of coconut bran and coconut shell biochar (CSB) as a composite growth substrate for lettuce cultivation in aquaponic systems. The study included the control (100 % coconut bran as the growth substrate) and treatment groups (T1–T5; containing 10 %, 20 %, 30 %, 40 %, and 50 % CSB as the growth substrate, respectively). The substrate properties; lettuce growth performance; and soil enzyme activity, nitrogen content, and abundance of microbial communities in the substrate were analyzed to determine the optimal substrate. Our findings indicated that CSB incorporation significantly altered the properties of the substrate, resulting in increased dry and bulk densities, pH, and water-holding capacity, and decreased electrical conductivity, water-absorption capacity, and porosity. Furthermore, the fresh weight of lettuce was notably increased in the treatment groups. The activities of fluorescein diacetate hydrolase, urease, nitrate reductase, and hydroxylamine reductase initially increased and further decreased, reaching the maximum in the T3 group. Conversely, the activity of nitrite reductase and contents of available nitrogen, nitrate-nitrogen, and ammonium-nitrogen in the substrates initially decreased and further increased, with the minimum values observed in the T3 group. The microbial sequencing results indicated that CSB incorporation significantly increased the microbial diversity and relative abundance of microorganisms associated with nitrogen transformation. Moreover, 30 % CSB incorporation exhibited the greatest effect on lettuce growth, with a 34.5 % and 31.6 % increase in fresh weight compared to the control during the growth and harvest periods, respectively. This study indicated the enormous potential of biochar in the research and development of green technologies for substrate amendment in aquaponic systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.