Abstract

Purpose: To obtain an improved precise gamma efficiency calibration curve of HPGe (High Purity Germanium) detector with a new comprehensive approach. Methods: Both of radioactive sources and Monte Carlo simulation (CYLTRAN) are used to determine HPGe gamma efficiency for energy range of 0–8 MeV. The HPGe is a GMX coaxial 280 cm3 N-type 70% gamma detector. Using Momentum Achromat Recoil Spectrometer (MARS) at the K500 superconducting cyclotron of Texas A&M University, the radioactive nucleus 24 Al was produced and separated. This nucleus has positron decays followed by gamma transitions up to 8 MeV from 24 Mg excited states which is used to do HPGe efficiency calibration. Results: With 24 Al gamma energy spectrum up to 8MeV, the efficiency for γ ray 7.07 MeV at 4.9 cm distance away from the radioactive source 24 Al was obtained at a value of 0.194(4)%, by carefully considering various factors such as positron annihilation, peak summing effect, beta detector efficiency and internal conversion effect. The Monte Carlo simulation (CYLTRAN) gave a value of 0.189%, which was in agreement with the experimental measurements. Applying to different energy points, then a precise efficiency calibration curve of HPGe detector up to 7.07 MeV at 4.9 cm distance away from the source 24 Al was obtained. Using the same data analysis procedure, the efficiency for the 7.07 MeV gamma ray at 15.1 cm from the source 24 Al was obtained at a value of 0.0387(6)%. MC simulation got a similar value of 0.0395%. This discrepancy led us to assign an uncertainty of 3% to the efficiency at 15.1 cm up to 7.07 MeV. The MC calculations also reproduced the intensity of observed single-and double-escape peaks, providing that the effects of positron annihilation-in-flight were incorporated. Conclusion: The precision improved gamma efficiency calibration curve provides more accurate radiation detection and dose calculation for cancer radiotherapy treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.