Abstract

Methodology of sufficient dimension reduction (SDR) has offered an effective means to facilitate regression analysis of high-dimensional data. When the response is censored, however, most existing SDR estimators cannot be applied, or require some restrictive conditions. In this article, we propose a new class of inverse censoring probability weighted SDR estimators for censored regressions. Moreover, regularization is introduced to achieve simultaneous variable selection and dimension reduction. Asymptotic properties and empirical performance of the proposed methods are examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.