Abstract
A key feature of the analysis of three-way arrays by Candecomp/Parafac is the essential uniqueness of the trilinear decomposition. We examine the uniqueness of the Candecomp/Parafac and Indscal decompositions. In the latter, the array to be decomposed has symmetric slices. We consider the case where two component matrices are randomly sampled from a continuous distribution, and the third component matrix has full column rank. In this context, we obtain almost sure sufficient uniqueness conditions for the Candecomp/Parafac and Indscal models separately, involving only the order of the three-way array and the number of components in the decomposition. Both uniqueness conditions are closer to necessity than the classical uniqueness condition by Kruskal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.