Abstract
This paper shows that the solutions to various convex $\ell_1$ minimization problems are \emph{unique} if and only if a common set of conditions are satisfied. This result applies broadly to the basis pursuit model, basis pursuit denoising model, Lasso model, as well as other $\ell_1$ models that either minimize $f(Ax-b)$ or impose the constraint $f(Ax-b)\leq\sigma$, where $f$ is a strictly convex function. For these models, this paper proves that, given a solution $x^*$ and defining $I=\supp(x^*)$ and $s=\sign(x^*_I)$, $x^*$ is the unique solution if and only if $A_I$ has full column rank and there exists $y$ such that $A_I^Ty=s$ and $|a_i^Ty|_\infty<1$ for $i\not\in I$. This condition is previously known to be sufficient for the basis pursuit model to have a unique solution supported on $I$. Indeed, it is also necessary, and applies to a variety of other $\ell_1$ models. The paper also discusses ways to recognize unique solutions and verify the uniqueness conditions numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.