Abstract
In this paper, we investigate the backward asymptotic autonomy of pullback attractors for asymptotically autonomous processes. Namely, time-components of the pullback attractors semi-converge to the global attractors of the corresponding limiting semigroups as the time-parameter goes to negative infinity. The present article is divided into two parts: theories and applications. In the theoretical part, we establish a sufficient and necessary criterion with respect to the backward asymptotic autonomy via backward compactness of pullback attractors. Moreover, this backward asymptotic autonomy is considered by the periodicity of pullback attractors. As for the applications part, we apply the abstract results to non-autonomous retarded sine-Gordon lattice systems. By backward uniform tail-estimates of solutions, we prove the existence of a pullback and global attractor for such lattice systems such that the backward asymptotic autonomy is satisfied. Furthermore, it is also fulfilled under the assumptions of the periodicity for the non-delay forcing and the convergence for processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.