Abstract
We study forward asymptotic autonomy of a pullback random attractor for a non-autonomous random lattice system and establish the criteria in terms of convergence, recurrence, forward-pullback absorption and asymptotic smallness of the discrete random dynamical system. By applying the abstract result to both non-autonomous and autonomous stochastic lattice equations with random viscosity, we show the existence of both pullback and global random attractors such that the time-component of the pullback attractor semi-converges to the global attractor as the time-parameter tends to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.