Abstract

We consider a nonsmooth multiobjective programming problem where the functions involved are nondifferentiable. The class of univex functions is generalized to a far wider class of (φ,α,ρ,σ)-dI-V-type I univex functions. Then, through various nontrivial examples, we illustrate that the class introduced is new and extends several known classes existing in the literature. Based upon these generalized functions, Karush-Kuhn-Tucker type sufficient optimality conditions are established. Further, we derive weak, strong, converse, and strict converse duality theorems for Mond-Weir type multiobjective dual program.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.