Abstract
Purpose: To evaluate the dosimetric accuracy between recomputed dose and deformed dose for stereotactic body radiation therapy in lung tumors. Methods: Two non-small-cell lung cancer patients were analyzed in this study, both of whom underwent 4D-CT and breath-hold CT imaging. Treatment planning was performed using the breath-hold CT images for the dose calculation and the 4D-CT images for determining internal target volumes. 4D-CT images were reconstructed with ten breathing amplitude for each patient. Maximum tumor motion was 13 mm for patient 1, and 7 mm for patient 2. The delivered dose was calculated using the 4D-CT images and using the same planning parameters as for the breath-hold CT. The deformed dose was computed by deforming the planning dose using the deformable image registration between each binned CT and the breath-hold CT. Results: For patient 1, the difference between recomputed dose and deformed mean lung dose (MLD) ranged from 11.3%(0.5 Gy) to 1.1%(0.06 Gy), mean tumor dose (MTD) ranged from 0.4%(0.19 Gy) to −1.3%(−0.6 Gy), lung V20 ranged from +0.74% to −0.33%. The differences in all three dosimetric criteria remain relatively invariant to target motion. For patient 2, V20 ranged from +0.42% to −2.41%, MLD ranged from −0.2%(−0.05 Gy) to −10.4%(−2.12 Gy), and MTD ranged from −0.5%(−0.31 Gy) to −5.3%(−3.24 Gy). The difference between recomputed dose and deformed dose shows strong correlation with tumor motion in all three dosimetric measurements. Conclusion: The correlation between dosimetric criteria and tumor motion is patient-specific, depending on the tumor locations, motion pattern, and deformable image registration accuracy. Deformed dose can be a good approximation for recalculated dose when tumor motion is small. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have