Abstract

BackgroundAdipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine. ASCs are abundant in fat tissue, which can be safely harvested through the minimally invasive procedure of liposuction. However, there exist a variety of different harvesting methods, with unclear impact on ASC regenerative potential. The aim of this study was thus to compare the functionality of ASCs derived from the common technique of suction-assisted lipoaspiration (SAL) versus resection.MethodsHuman adipose tissue was obtained from paired abdominoplasty and SAL samples from three female donors, and was processed to isolate the stromal vascular fraction. Fluorescence-activated cell sorting was used to determine ASC yield, and cell viability was assayed. Adipogenic and osteogenic differentiation capacity were assessed in vitro using phenotypic staining and quantification of gene expression. Finally, ASCs were applied in an in vivo model of tissue repair to evaluate their regenerative potential.ResultsSAL specimens provided significantly fewer ASCs when compared to excised fat tissue, however, with equivalent viability. SAL-derived ASCs demonstrated greater expression of the adipogenic markers FABP-4 and LPL, although this did not result in a difference in adipogenic differentiation. There were no differences detected in osteogenic differentiation capacity as measured by alkaline phosphatase, mineralization or osteogenic gene expression. Both SAL- and resection-derived ASCs enhanced significantly cutaneous healing and vascularization in vivo, with no significant difference between the two groups.ConclusionSAL provides viable ASCs with full capacity for multi-lineage differentiation and tissue regeneration, and is an effective method of obtaining ASCs for cell-based therapies.

Highlights

  • Adipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine

  • suction-assisted lipoaspiration (SAL) yields a decreased frequency of ASCs ASC yield was assessed in freshly harvested stromal vascular fraction (SVF) from lipoaspirates and resected adipose tissue to determine if SAL impacts ASC frequency

  • We found that ASCs obtained from both SAL and excised abdominoplasty tissue occurred at high frequencies and viability, excised adipose tissue provided greater yields of ASCs when compared to SAL

Read more

Summary

Introduction

Adipose-derived stem cells (ASCs) have been identified as a population of multipotent cells with promising applications in tissue engineering and regenerative medicine. Previous work from our laboratory has demonstrated that relative to SAL, laser-assisted liposuction (LAL) leads to reduced ASC viability and in vivo regenerative potential [16], while ultrasound-assisted liposuction (UAL) does not affect ASC yield, proliferation, differentiation or capacity for tissue regeneration [17]. It remains to be determined what effects SAL itself has on key ASC characteristics. The aim of this study was to determine the effects of SAL on ASC yield, viability, in vitro adipogenic and osteogenic differentiation capabilities, as well as in vivo regenerative potential by comparing ASCs derived from SAL lipoaspirates and those from resected adipose tissue

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call