Abstract

Listonella anguillarum is a Gram-negative facultative anaerobic rod causing hemorrhagic septicemia in marine and rarely in freshwater fish. Succinate dehydrogenase (SDH) plays an important role in the tricarboxylic acid (TCA) cycle by oxidizing succinate to fumarate while reducing ubiquinone to ubiquinol. Recent studies indicate that central metabolic pathways, including the TCA cycle, contribute to bacterial virulence. However, the role of SDH in L. anguillarum virulence has not been studied. Here, we report in-frame deletion of the succinate dehydrogenase iron-sulfur protein (SDHB) and its role in L. anguillarum virulence in rainbow trout. To accomplish this goal, upstream and downstream regions of the L. anguillarum sdhB gene were amplified in-frame and cloned into a suicide plasmid. The chromosomal sdhB gene of L. anguillarum was deleted by homologous recombination. Virulence and immunogenicity of the L. anguillarum ΔsdhB mutant (LaΔsdhB) were determined in rainbow trout. Results show that LaΔsdhB was highly attenuated in rainbow trout, and fish immunized with LaΔsdhB displayed high relative survival rate after exposure to wild type L. anguillarum. These findings indicate SDH is important in L. anguillarum virulence in rainbow trout, and LaΔsdhB could be used as an immersion, oral, or injection vaccine to protect rainbow trout against vibriosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.