Abstract

BackgroundLaparoscopic surgery for a patient with Fontan physiology is challenging because pneumoperitoneum and positive pressure ventilation could decrease venous return and the accumulated partial pressure of arterial carbon dioxide (PaCO2) could increase pulmonary vascular resistance, which might lead to disruption of the hemodynamics.Case presentationA 25-year-old man with Fontan physiology was scheduled to undergo laparoscopic liver resection for Fontan-associated liver disease (FALD) with noninvasive monitoring of cardiac output (CO) by transpulmonary thermodilution in addition to transesophageal echocardiography. The abdominal air pressure was maintained low, and we planned to switch to open abdominal surgery promptly if hemodynamic instability became apparent because of the accumulated PaCO2 or postural change. Consequently, the pneumoperitoneum had limited influence on circulatory dynamics, but central venous pressure significantly decreased with postural change to the reverse Trendelenburg position. Laparoscopic liver resection for FALD was performed successfully with no significant changes in CO and central venous saturation.ConclusionsWith strict circulation management, laparoscopic surgery for a patient with Fontan physiology can be performed safely. Comprehensive hemodynamic assessment by noninvasive transpulmonary thermodilution can provide valuable information to determine the time for shift to open abdominal surgery.

Highlights

  • Laparoscopic surgery for a patient with Fontan physiology is challenging because pneumoperitoneum and positive pressure ventilation could decrease venous return and the accumulated partial pressure of arterial carbon dioxide (PaCO2) could increase pulmonary vascular resistance, which might lead to disruption of the hemodynamics.Case presentation: A 25-year-old man with Fontan physiology was scheduled to undergo laparoscopic liver resection for Fontan-associated liver disease (FALD) with noninvasive monitoring of cardiac output (CO) by transpulmonary thermodilution in addition to transesophageal echocardiography

  • Comprehensive hemodynamic assessment by noninvasive transpulmonary thermodilution can provide valuable information to determine the time for shift to open abdominal surgery

  • Laparoscopic liver resection is usually performed in the reverse Trendelenburg position, which can induce a decrease in venous return from the lower extremity

Read more

Summary

Conclusions

In the perioperative management of FALD, CO2 insufflation had a limited effect on hemodynamics. With strict circulation management using noninvasive monitoring systems such as the PiCCO catheter, laparoscopic surgery for a patient with Fontan physiology can be performed safely. Postural change to the reverse Trendelenburg position can decrease CVP, which could contribute to reduced blood loss. If postural change or CO2 insufflation affects hemodynamic status, open liver resection should be performed. Comprehensive hemodynamic assessment by noninvasive transpulmonary thermodilution in addition to myocardial motion monitoring by transesophageal echography can provide valuable information for determining the time of shift to open abdominal surgery

Background
Discussion
Funding Not applicable
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call