Abstract

The production of spermatophore and ejaculate is energetically expensive for males. High mating rates may accelerate sperm depletion and progressively decrease the size of the ejaculates. Sperm competition can shape spermatozoon numbers according to different signals and cues such as number of potential rivals or female mating status. Factors influencing patterns of sperm allocation have been neglected in terrestrial arthropods that transfer sperm indirectly using a complex sclerotized spermatophore deposited on the soil. We used the Neotropical scorpion Bothriurus bonariensis (C.L. Koch, 1842) to examine ejaculate volume, spermatozoon number, and spermatophore’s trunk length along three successive matings and their relationship with body size of males. Males mated and deposited a pre-insemination spermatophore every 10 days. Ejaculate volume and trunk length decreased, whereas spermatozoon number increased over matings. Male body size positively influenced ejaculate volume and trunk length interacted with mating event. High mating rates may decrease ejaculate volume. Sperm competition may produce increased spermatozoon number. Ejaculates are more energetically expensive than spermatozoa and larger males may better face the energetic requirements. Larger spermatophore trunks contain bigger ejaculate volume in the first two mating events, but this relationship disappears at the third mating event. Our discussion focuses on the factors responsible for the observed patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call