Abstract

Cross-linked chitosan (CCS) microspheres tethered with melamine-conjugated poly(hydroxyethyl methacrylate) (PHEMA) brushes were synthesized by combination of surface-initiated atom transfer radical polymerization (ATRP) of HEMA and subsequent covalent immobilization of melamine onto the chain ends of PHEMA brushes. The as-synthesized CCS microsphere was used as a novel adsorbent for effective uptake of Cu(II) ions from aqueous solution. Success in each functionalization step was ascertained by SEM, ATR-FTIR and XPS characterization. Batch adsorption experimental results demonstrated that the adsorption equilibrium of Cu(II) ions on the melamine-grafted CCS microsphere was rapidly established within 20 min, and the adsorption process was found to be governed by intra-particle diffusion and chemisorption processes. The Langmuir-fitted maximum adsorption capacity of Cu(II) ions on the as-synthesized CCS microspheres was as high as circa 4.67 mmol L−1 (299 mg g−1). The calculated thermodynamic parameters revealed an endothermic and spontaneous adsorption process of Cu(II) ions on the melamine-grafted CCS microspheres. XPS spectra revealed that the adsorption mechanism was attributed to coordination (or chelation) interactions between amino (or hydroxyl) groups with cationic Cu(II) ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call