Abstract

The influence of electron beam irradiation (EBI) treatment on the modification of gelatin-galactose glycosylation was thoroughly examined. The results of the degree of grafting and browning revealed that EBI triggered the glycosylation reaction of gelatin. The degree of glycosylation exhibited a gradual increase with the rising irradiation dose, reaching a maximum of 25 kGy. Moreover, the irradiation process opened up gelatin's internal structure, exposing its hydrophobic groups. This exposure led to an enhancement in sample surface hydrophobicity. The fluorescence intensity at the maximum emission wavelength of the fluorescence spectra decreased; Fourier infrared spectroscopy demonstrated a new absorption peak at 1074 cm−1 for the glycosylation product. These findings substantiate that gelatin formed a new product through covalent bonding with galactose. Glycosylation boosted the emulsification stability of gelatin from 1.92 min to 10.42 min and improved its emulsification and rheological properties. These outcomes affirm that EBI can effectively induce the glycosylation reaction of gelatin, thereby enhancing its functional properties. In addition, EBI has the potential to supplant the conventional heating glycosylation method. This study lays a solid theoretical foundation for the future application of glycosylation and gelatin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.