Abstract

Abstract A simultaneous assimilation model of drifting buoy and altimetric data is proposed to determine the mean sea surface height (SSH) as well as the temporal evolution of the surface circulation on synoptic scales. To demonstrate the efficiency of our assimilation model, several identical twin experiments for the double-gyre circulation system are performed using a 11/2-layer primitive equation model. An optimal interpolation for the multivariate is used for the assimilation scheme that assumes the geostrophic relationship between the error fields of the velocity and the interface depth. To identify the nature of the assimilation of the buoy-derived velocities into the dynamical ocean model, the authors first conduct the assimilation experiment using the drifting buoy data alone. The result shows that realistic buoy deployment (32 in a 40° square) can effectively constrain the model variables; that is, both the absolute (mean plus time varying) velocity and SSH (interface depth) fields are significan...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call