Abstract

Wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP) is highly toxic and causes harmful effects on aquatic ecosystems and human health. In this study, wastewater containing high levels of 2,4,6-TCP was successfully co-metabolized by introducing municipal domestic wastewater (MDW) as the co-catabolic carbon source. The concentration of degraded 2,4,6-TCP increased from 0 to 208.71 mg/L by adjusting the influent MDW volume during a 150-day-long operation. An MDW dose of 500 mL was found optimal, with an average concentration of 250 mgCOD/L. Unlike the long-term experiment, changing the MDW adding mode in a typical cycle further increased the concentration of 2,4,6-TCP removed to 317 mg/L. The main MDW components, such as the sugars, VFAs, and slowly biodegradable organic substances, improved 2,4,6-TCP degradation, achieving a TOC removal efficiency of 90.98% and a dechlorination efficiency of 100%. The MDW level did not change the 2,4,6-TCP degradation rate (μTCP) in a typical cycle compared to the single carbon source, and the μTCP remained at a high level of 50 mg 2,4,6-TCP/h. Macrogenetic analysis demonstrated that MDW addition promoted the growth of 43 bacterial genera (41.49%) responsible for 2,4,6-TCP degradation and intermediates’ metabolism. The key genes for 2,4,6-TCP metabolism (pcpA, chqB, mal-r, pcaI, pcaF, and fadA) were detected in the activated sludge, which were distributed among the 43 genera. To conclude, this study proposes a new carbon source for co-metabolism to treat 2,4,6-TCP-polluted wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call