Abstract
Statement of problemDespite its clinical benefits, the immediate loading protocol might have a higher risk of implant failure than the regular protocol. Ultraviolet (UV) photofunctionalization is a novel surface enhancement technique for dental implants. However, the effect of photofunctionalization under loading conditions is unclear. PurposeThe purpose of this animal study was to evaluate the effect of photofunctionalization on the biomechanical quality and strength of osseointegration under loaded conditions in a rat model. Material and methodsUntreated and photofunctionalized, acid-etched titanium implants were placed into rat femurs. The implants were immediately loaded with 0.46 N of constant lateral force. The implant positions were evaluated after 2 weeks of healing. The strength of osseointegration was evaluated by measuring the bone-implant interfacial breakdown point during biomechanical push-in testing. ResultsPhotofunctionalization induced hydrophilic surfaces on the implants. Osseointegration was successful in 28.6% of untreated implants and 100% of photofunctionalized implants. The strength of osseointegration in successful implants was 2.4 times higher in photofunctionalized implants than in untreated implants. The degree of tilt of untreated implants toward the origin of force was twice that of photofunctionalized implants. ConclusionsWithin the limit of an animal model, photofunctionalization significantly increased the success of osseointegration and prevented implant tilt. Even for the implants that underwent successful osseointegration, the strength of osseointegration was significantly higher for photofunctionalized implants than for untreated implants. Further experiments are warranted to determine the effectiveness of photofunctionalization on immediately loaded dental implants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.