Abstract
AbstractThe utility of DNA sequence substrings (k-mers) in alignment-free phylogenetic classification, including that of bacteria and viruses, is increasingly recognized. However, its biological basis eludes many 21st century practitioners. A path from the 19th century recognition of the informational basis of heredity to the modern era can be discerned. Crick’s DNA ‘unpairing postulate’ predicted that recombinational pairing of homologous DNAs during meiosis would be mediated by short k-mers in the loops of stem-loop structures extruded from classical duplex helices. The complementary ‘kissing’ duplex loops – like tRNA anticodon–codon k-mer duplexes – would seed a more extensive pairing that would then extend until limited by lack of homology or other factors. Indeed, this became the principle behind alignment-based methods that assessed similarity by degree of DNA–DNA reassociation in vitro. These are now seen as less sensitive than alignment-free methods that are closely consistent, both theoretically and mechanistically, with chromosomal anti-recombination models for the initiation of divergence into new species. The analytical power of k-mer differences supports the theses that evolutionary advance sometimes serves the needs of nucleic acids (genomes) rather than proteins (genes), and that such differences can play a role in early speciation events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.