Abstract

ATP concentration modulates oxygen exchange catalyzed by purified, soluble mitochondrial ATPase during ATP hydrolysis so that water oxygen incorporation into each Pi formed increases markedly as ATP concentration is lowered. This behavior is readily explained by catalytic cooperativity between subunits of the ATPase. However, other reasonable explanations also need consideration. A new approach for assessing these various explanations is used, based on measurement of the [18O]Pi species formed by hydrolysis of ATP highly labeled with 18O in the gamma-phosphoryl group. The results and other supporting data give what appears to be the most compelling evidence yet attained for alternating site catalytic cooperativity in an enzymic catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.