Abstract

It has been shown that a best rank- R approximation of an order- k tensor may not exist when R ⩾ 2 and k ⩾ 3 . This poses a serious problem to data analysts using tensor decompositions. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximation generally does not decrease tensor rank. In this paper, we provide a mathematical treatment of this property for real-valued 2 × 2 × 2 tensors, with symmetric tensors as a special case. Regardless of the symmetry, we show that for generic 2 × 2 × 2 tensors (which have rank 2 or 3), subtracting a best rank-1 approximation results in a tensor that has rank 3 and lies on the boundary between the rank-2 and rank-3 sets. Hence, for a typical tensor of rank 2, subtracting a best rank-1 approximation increases the tensor rank.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call