Abstract

Low-rank tensor recovery (LRTR) has recently emerged as the potent tools for representing multidimensional data. One of the most popular LRTR is tensor rank minimization that acts as the estimating tensor rank for a given tensor. However, the existing convex tensor rank approximation methods suffer from the serious rank estimation bias due to neglecting the physical meanings of singular values along each mode. In this paper, we propose a new method to approximate the tensor rank by using the nonconvex logarithmic surrogate function of the singular values, and the redefined rank approximation can further reduce to a convex weighted nuclear norm minimization (WNNM) problem. By embedding the tensor rank function into the tensor completion (TC) and tensor robust PCA (TRPCA) frameworks, new models are formulated to enhance tensor processing. Additionally, by introducing relaxation forms of the proposed tensor rank function, the alternating direction method of multipliers (ADMM) can be adopted for the models. The proposed nonconvex tensor rank minimization method can achieve state-of-the-art performance in tensor recovery, including tensor completion and background subtraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.