Abstract

Inland vertebrate predators could enrich of nutrients the local top soils in the area surrounding their nests and dens by depositing faeces, urine, and prey remains and, thus, alter the dynamics of plant populations. Surprisingly, and in contrast with convincing evidence from coastal habitats, whether and how this phenomenon occurs in inland habitats is largely uncertain even though these habitats represent a major fraction of the earth's surface. We investigated during two consecutive breeding seasons the potential enrichment of the top-soils associated with inland ground-nesting eagle owls Bubo bubo, as well as its possible consequences in the growth of two common annual grasses in southern Spain. Top-soils associated with owl nests differed strongly and significantly from control top-soils in chemical parameters, mainly fertility-related properties. Specifically, levels of available phosphorus, total nitrogen, organic matter, and available potassium were 49.1, 5.6, 3.1, and 2.7 times higher, respectively, in top-soils associated with owl nests as compared to control top-soils. Germination experiments in chambers indicated that nutrient enrichment by nesting owls enhanced seedling growth in both annual grasses (Phalaris canariensis and Avena sativa), with seedling size being 1.4–1.3 times higher in owl nest top-soils than in control top-soils. Our experimental study revealed that pervasive inland, predatory birds can profoundly enrich the topsoil around their nests and, thus, potentially enhance local vegetation growth. Because diverse inland vertebrate predators are widespread in most habitats they have a strong potential to enhance spatial heterogeneity, impinge on plant communities, and exert an overlooked effect on primary productivity worldwide.

Highlights

  • Predators are well-known for their indirect positive effect on many plant populations and communities [1, 2]

  • The second component (PC2) mostly corresponds to a top-soil texture gradient running from high clay content on the positive extreme to high sand content on the negative extreme (Table 2)

  • Univariate analyses indicated that these differences were highly significant for PC1 (F1, 40 = 77.74, P < 0.0001), but non-significant for PC2 and PC3 (P > 0.340)

Read more

Summary

Introduction

Predators are well-known for their indirect positive effect on many plant populations and communities [1, 2]. Whereas the most immediate effects of those widespread predators is predictable (i.e. nutrient enrichment), whether and how inland predators locally alter the growth and dynamic of plant populations is a intriguing overlooked question with potential repercussions for a large part of terrestrial habitats. This experimental study illustrates how inland predators enrich the topsoil in the vicinity of their nests, as well as its coupled effects on seedling growth and emergence.

Methods
Results
Discussion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.