Abstract

A new technique for the three-dimensional analysis of subsurface damage of nanocomposites is presented. Cu-Al multilayers, grown epitaxially on (0001)Al2O3 single crystals by ultra high vacuum molecular beam epitaxy, have been deformed by nanoindentation. Systematic slicing and imaging of the deformed region by focused ion beam microscopy enables a 3D data set of the damaged region to be collected. From this 3D data set, profiles of the deformed sub-surface interfaces can be extracted. This enables the deformation of the individual layers, substrate and overall film thickness to be determined around the damage site. These 3D deformation maps have exciting implications for the analysis of mechanical deformation of nanocomposites on a sub-micrometre scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.